
Department of Computer, Control and
Management Engineering

FP7
Improving Footstep Planning

Algorithms by Efficient Nearest
Neighbor Searching

Autonomous and Mobile Robotics

Professor:

Giuseppe Oriolo

Supervisor:

Michele Cipriano

Students:

Ionut Marian Motoi

Leonardo Saraceni

Giuseppe Sensolini Arrà

Academic Year 2020/2021

Contents

1 Introduction 2

2 Sampling-Based Planning 4

2.1 RRT . 4

2.2 RRT* . 5

2.3 Anytime . 7

2.4 Footstep Planning . 8

3 Nearest Neighbor 10

3.1 Naive algorithm . 10

3.2 Static k-d tree . 11

3.3 Making the kd-tree dynamic . 13

4 Simulations 16

5 Conclusions 19

1

1 Introduction

One of the bottlenecks in the performance of sampling-based motion

planning algorithms is the computational cost of the nearest-neighbor operation.

Consequently the development of efficient techniques for nearest neighbor

searching is of paramount importance, in order to keep the planning time low.

As stated by Michal Kleinbort et al. in the paper [8], the complexity

of nearest-neighbor search dominates the asymptotic running time of many

sampling-based motion-planning algorithms. In spite of this, collision detection

is often considered to be the computational bottleneck in practice. However,

there are many asymptotically optimal planning algorithms, that are called

NN-sensitive, in which the practical computational role of the nearest-neighbor

search is far from being negligible, even for a relatively small number of samples.

This means that the portion of running time taken up by nearest-neighbor

search is comparable to, or sometimes even greater than, the portion of time

taken up by collision detection. This reinforces and substantiates the claim

that motion-planning algorithms could significantly benefit from efficient

nearest-neighbor data structures.

In order to show this, in the figure below (fig. 1) we can see that the total

time spent by the algorithm is completely dominated by the search time.

Figure 1: Time spent doing NN search vs RRT total time using Naive algorithm

2

Therefore, the aim of the project is to enhance the footstep planning of

humanoid robots, improving the nearest neighbor searching algorithm, by using

a different data structure, such as the k-d tree, that allows to perform searches in

logarithmic time. More specifically our goal consists in extending the RRT and

RRT* footstep planners proposed by our tutor, by implementing a self-balancing

k-d tree on non-Euclidean topologies.

In order to validate the new method, simulations have been performed using

V-REP/CoppeliaSim, using the humanoid robot HRP4 framework for the tests.

3

2 Sampling-Based Planning

The motion planning problem consists of finding a dynamically feasible

trajectory that takes the robot from an initial state to a goal state while avoiding

collision with obstacles.

This is of fundamental importance especially for Humanoid robots, that must

be able to navigate autonomously, even in complex and cluttered environments.

For this to be possible, they must be able to quickly and efficiently compute

desired footsteps to reach a goal.

Many approaches have been considered in order to obtain always increasing

performances to solve the footstep planning problem. Rapidly-exploring random

trees (RRT) is a common option that both creates a graph and finds a path. The

path will not necessarily be optimal. RRT*, is an optimized modified algorithm

that aims to achieve a shortest path, whether by distance or other metrics.

There are two main challenges that are imposed by this problem. First,

the robot does not have existing nodes to travel between. Secondly, one must

determine how a shortest path will be determined. A possible way to solve

footstep planning problems is by using continuous optimization techniques,

which do not restrict possible steps to a finite set. However, this would

require an expensive computation in order to find the obstacle-free regions.

The alternative, is to use only a finite set of predefined steps for fast collision

checking, and therefore the solution consists of a particular sequence of such

movements.

2.1 RRT

The Rapidly-exploring Random Tree (RRT) is a classical algorithm of

motion planning based on incremental sampling, which is widely used to solve

the planning problem of mobile robots, since it is able to efficiently search

non-convex, high-dimensional spaces by randomly building a space-filling tree.

In particular, RRT (Alg. 1) consists of a tree of paths incrementally grown at

each iteration, by selecting a random configuration from the search space. It

starts with an empty tree and adds a node that corresponds to the initial state.

The for N iterations it expands the tree by sampling a random state zrand from

the obstacle-free space and finds the closest node (with respect to a predefined

metric) in the tree znearest. Then it computes the trajectory xnew that expands

the closest node toward the sample. After that, if the trajectory is feasible, the

new state znew is added to the tree with znearest as its parent and continues

with the next iteration.

It is important to notice that the the expansion is biased towards unexplored

areas of the search space, that in this way can be rapidly covered. RRT can

easily handle problems with obstacles and differential constraints, and for this

4

reason has been widely used in autonomous robotic motion planning.

Algorithm 1 T = (V,E)← RRT (zinit)

1: T ← InitializeTree()

2: T ← InsertNode(∅, zinit, T)

3: for i = 1 to i = N do

4: zrand ← Sample(i);

5: znearest ← Nearest(T , zrand)

6: (xnew, unew, Tnew)← Steer(znearest, zrand)

7: if ObstacleFree(xnew) then

8: T ← InsertNode(znearest, znew, T)

9: return T

The benefit of the algorithm is its speed and ease of implementation.

Compared to other path planning algorithms, RRT is fairly quick. The most

expensive part of the algorithm is finding its closest neighbor, since the cost of

this process depends heavily on the number of vertices that have been generated.

2.2 RRT*

An alternative algorithm proposed by Karaman and Frazzoli [7] is RRT*, a

sampling-based method that has the asymptotic optimality property along with

probabilistic completeness guarantees. Like the RRT, it quickly finds a feasible

motion plan. Then, it improves the current plan toward the optimal solution in

the remaining time before the plan execution is complete.

The RRT* algorithm (Alg. 2) solves the optimal motion planning problem

by building and maintaining a tree T made of vertices representing states in

Xfree. The tree is generated in a similar way as the standard RRT, with the

addition of the optimization part.

The RRT* starts with an empty tree and adds a single node corresponding

to the initial state. Then it builds and refines the tree incrementally through a

set of N iterations (lines 3-11). At each of those iterations it samples a random

state zrand from the obstacle-free space (line 4) and solves for a trajectory xnew

that extends the closest node in the tree znearest toward the sample (lines 5-6).

If this is a feasible trajectory, i.e. does not collide with obstacles (line 7), RRT*

considers all the nodes in the neighborhood of znew (line 8) and evaluates the

cost of choosing each of them as the parent.

This procedure (Alg. 3) computes the total cost as the additive combination

of the cost associated with reaching the potential parent node and the cost of

the trajectory to znew. Then the node with the lowest cost zmin becomes the

parent and the new node znew is added to the tree (line 10 - Alg. 2).

Finally the ReWire process (Alg. 4) checks each node znear in the vicinity

5

Algorithm 2 T = (V,E)← RRT ∗(zinit)

1: T ← InitializeTree()

2: T ← InsertNode(∅, zinit, T)

3: for i = 1 to i = N do

4: zrand ← Sample(i)

5: znearest ← Nearest(T , zrand)

6: (xnew, unew, Tnew)← Steer(znearest, zrand)

7: if ObstacleFree(xnew) then

8: Znear ← Near(T , znew, |V |)
9: zmin ← ChooseParent(Znear, znearest, znew, xnew)

10: T ← InsertNode(zmin, znew, T)

11: T ← Rewire(T , Znear, zmin, znew)

12: return T

Algorithm 3 zmin ← ChooseParent(Znear, znearest, xnew)

1: zmin ← znearest

2: cmin ← Cost(znearest) + c(xnew)

3: for znear ∈ Znear do

4: (x′, u′, T ′)← Steer(znear, znew)

5: if ObstacleFree(x′) and x′(T ′) = znew then

6: c′ = Cost(znear) + c(x′)

7: if c′ < Cost(znew) and c′ < cmin then

8: zmin ← znear

9: cmin ← c′

10: return zmin

Algorithm 4 T ← ReWire(T , Znear, zmin, znew)

1: for znear ∈ Znear \ {zmin} do

2: (x′, u′, T ′)← Steer(znew, znear)

3: if ObstacleFree(x′) and x′(T ′) = znear

4: and Cost(znew) + c(x′) < Cost(znear) then

5: T ← ReConnect(znew, znear, T)

6: return T

6

of znew to see if reaching znear via znew would achieve a lower cost than doing

so through its current parent (line 3). When this connection reduces the total

cost associated with znear, the algorithm ”rewires” the tree to make znew the

parent of znear (line 4).

The RRT* then continues with the next iteration.

2.3 Anytime

In practice robotic motion planning algorithms must operate with limited

computational resources, as well as with incomplete and often imperfect

knowledge of the environment in which it navigates. In such cases, anytime

algorithms are well suited since they quickly find a feasible, but not necessarily

optimal motion plan, then incrementally improve it over time toward optimality.

A system that uses anytime planning needs to perform two functions:

execution and optimization of the current plan (alg. 5).

The properties such an algorithm need to have are some form of completeness

guarantee (sampling-based algorithms are usually probabilistically complete)

and asymptotic optimality.

RRT has the first property. In fact it is able to efficiently find a feasible

solution. However, it lacks the asymptotic optimality property. Karaman and

Frazzoli proved that the probability of the RRT algorithm converging to an

optimal solution is actually zero [7]. In any case, it is possible to use RRT with

an anytime modality, by first computing a feasible solution and then using the

remaining time to improve the initial plan, even if it will probably never be the

optimal one.

On the other hand, RRT* has both those properties and for this reason it

is preferable, especially in real time motion planning applications.

Algorithm 5 Anytime

1: T ← RRT ∗ (vinit)

2: repeat

3: P ← ExtractBestP lan(T)

4: vcurr ← P0

5: vnext ← P1

6: do in parallel

7: ExecuteStep(vcurr, vnext)

8: T ← RRT ∗(vnext)

9: until vnext in G

7

2.4 Footstep Planning

To increase the speed of operation and reduce operator burden, humanoid

robots must be able to function autonomously, even in complex, cluttered

environments. For this to be possible, they must be able to quickly and

efficiently compute desired footsteps to reach a goal.

While the mobility of humanoid robots has significantly improved, allowing

them to walk quickly and robustly, they are still fairly limited as to their

ability to handle rough terrain. Rough terrain for robots has a sparse, limited

number of footholds, with large, discrete height changes and varied surface

normals. This requires the robot to use accurate foot placement in order to

reach the goal. Navigating over rough terrain is a key skill for humanoid robots

to function in many operating environments, and highlights their distinctive

mobility capabilities.

In order to achieve the walk to task of the robot, an offline planner is

provided, whose target is to find a proper sequence of footsteps P = f j that

brings the robot to the goal region G, together with the associated swing foot

trajectories f jswg.

Our project is based on the work related to the paper [1] by Ferrari et

al., where a humanoid robot has to reach an assigned goal region G (walk-to

task) in an environment (World of Stairs) made of horizontal patches located

at different heights. The environment is represented as a 2.5-dimensional grid

map of equally-sized cells, also called elevation map, denoted by Mz, used to

provide the height of the ground at each cell of coordinate x, y.

In particular, the footstep planner consists of a randomized algorithm, that

iteratively builds a tree in the search space. Each vertex specifies the poses

of both feet during a double support phase, and then, during the walk phase,

one of the two feet will be chosen as support, while the other is the moving one

(swinging). The initial support foot can be chosen arbitrarily. At each iteration,

a random point prand is randomly generated by drawing its x, y coordinates,

and then the closest vertex in the tree is taken (according to the chosen metric),

together with the foot poses associated to it. It’s important to notice that

the z coordinate is simply retrieved from the elevation map Mz. After this, a

candidate footstep fcand is generated by randomly selecting a final pose of the

swinging foot from the catalogue of primitives (fig. 2), defined with respect to

the support foot of the closest vertex. At this point, the algorithm verifies if

the candidate is feasible and and if a collision-free trajectory exists, such that

the swinging foot can be moved to the candidate pose, and the new vertex is

added to the tree, connected to its parent.

8

catalogue

U

f
near
sup

Figure 2: Catalogue of primitives

Algorithm 6 FootstepP lanner

1: root the tree T at vini ← (fL, fR)

2: i← 0

3: repeat

4: i← i+ 1

5: generate a random point prand on the ground

6: select the closest vertex vnear in T to prand according to γ(·, prand)

7: randomly select a candidate footstep f cand from primitive catalogue U

8: if f cand is feasible then

9: h← hmin

10: pcandswg ← BuildTrajectory(fnearswg , f
cand, h)

11: while h ≤ hmax and Collision(pcandswg) do

12: h← h+ ∆h

13: pcandswg ← BuildTrajectory(fnearswg , f
cand, h)

14: if h ≤ hmax then

15: vnew ← (f cand, fcandsup)

16: add vertex vnew to T as a child of vnear

17: compute midpoint m between the feet at vnew

18: until m ∈ G or i = imax

9

3 Nearest Neighbor

One of the bottlenecks in the performance of sampling-based

motion-planning algorithms is the cost of nearest-neighbors calls. Hence,

it is necessary to develop efficient techniques that allow searching for the

nearest-neighbor in configuration spaces that are used in motion planning. Our

implementation of the nearest-neighbor search algorithm is based on the one

developed by Lavalle et. al. that uses kd-trees.

Nearest neighbor search (NNS), is the optimization problem of finding the

point in a given set that is closest (or most similar) to a given point. Formally,

the nearest-neighbor search problem is defined as follows: given a set S of points

in a space X and a query point q ∈ X , find the closest point in S to q.

Closeness is typically expressed in terms of a dissimilarity function: the less

similar the objects, the larger the function values. In general, many different

dissimilarity functions can be used, like the Euclidean distance, Manhattan

distance or other distance metrics. However, the dissimilarity function can be

arbitrary. In fact, in our case we had to find the double support configuration

v whose support foot is the closest to a 3-dimensional query point Pt at each

iteration, using a particular metric, given by:

γ(v, P t)← D(m,Pt) + α|θp| (1)

Where α is a positive scalar, and |θp| is the angle between the robot

sagittal axis and the line joining the double support configuration v to the

3-dimensional point Pt.

Various solutions to the NNS problem have been proposed. The quality and

usefulness of the algorithms are determined by the time complexity of queries

as well as the space complexity of any search data structure that must be

maintained. In particular our task was to implement a balanced k-d tree in

order to obtain a remarkable improvement during the search phase.

3.1 Naive algorithm

The simplest solution to the nearest neighbor search problem is to compute

the distance from the query point to every other point in the search space,

keeping track of the best one. This algorithm, sometimes referred to as the

naive approach, has a running time of O(n), where n is the number of nodes in

the searching tree. There are no search data structures to maintain, so linear

search has no space complexity beyond the storage of the tree.

The previous implementation of the search was linear in time, in fact it

consisted only of a simple Depth First Search (DFS) on the current tree, and

10

its implementation is reported here briefly.

Algorithm 7 LinearSearch

1: for v ∈ T do

2: d← γ(v, P t)

3: if d < CurrMin then

4: CurrMin = d

5: NearestNode = v

6: return NearestNode

However this solution resulted to be quite slow, therefore the key of our

project is to speed up this process, in order to make its time complexity

logarithmic in time.

3.2 Static k-d tree

A k-d tree is a space-partitioning data structure for organizing points

in a k-dimensional space. K-d trees are a useful data structure for several

applications, such as searches involving a multidimensional search key (e.g.

range searches and nearest neighbor searches) and creating point clouds.

A k-d tree is built by mean of two kind of nodes.

• Leaf Node: contains a k-dimensional point.

• Middle Node: represents a splitting hyperplane dividing the space in

two parts. Points to the left of this hyperplane are represented by the

left subtree of that node and points to the right of the hyperplane are

represented by the right subtree. In our implementation this kind of node

does not contain any k-dimensional point.

The proposed k-d tree make use of hyperplanes parallel to the main axis. The

algorithm iteratively changes the cutting dimension and at each step computes

the cutting value along the current cutting dimension. The construction of the

k-d tree is explained in detail the following example.

example. Consider a set of points {a, b, c, d} ∈ R2, and let the cutting

dimension be x. Then the set is stored in ascending order (according to the x

coordinate) in a vector V = {b, a, c, d}. The first b |V|2 c points of V are stored in

a new vector VL, while the remaining ones are placed in VR; In this particular

example VL = {b, a} and VR = {c, d}. Ultimately the cutting value is computed

as (ax + cx)/2, and the cutting dimension is switched to y. The same steps are

recursively applied to VL and VR until they contains 1 point only.

11

Figure 3: example of k-d tree containing 4 elements

Algorithm 8 BuildKDTree(V, cut dim)

1: if |V | = 1 then

2: return LeafNode(V)

3: split V along cut dim in VL and VR

4: update cut dim

5: TL ← BuildKDTree(VL, cut dim)

6: TR ← BuildKDTree(VR, cut dim)

7: return MiddleNode(cut dim, cut val, TL, TR)

The splitting in line 4 of algorithm 8 is done in a way that guarantees the

balancing of the constructed k-d tree. Line 5 swap the cutting dimension from

x to y and viceversa.

Nearest neighbor search over the k-d tree is accomplished in O(log n). The

search is summarized in algorithm 9. In what follows dbox is the squared distance

from the root box to the query, bK is the projection of the current node onto

the space stored in the node, and p the closest point to the query; dbest and p

variables are initialized respectively to ∞ and NULL.

12

Algorithm 9 Search(query, dbox, dbest, p)

1: if CurrentNode is a MiddleNode then

2: if dbox < dbest then

3: Split bK into subboxes bKL
and bKR

corresponding to TL and TR

4: dL ← dist2(query, bKL
)

5: dR ← dist2(query, bKR
)

6: if dL < dR then

7: TL → Search(dbox, dbest, p)

8: TR → Search(dbox − dL + dR, dbest, p)

9: else

10: TR → Search(dbox, dbest, p)

11: TL → Search(dbox − dR + dL, dbest, p)

12: if CurrentNode is a LeafNode then

13: Compute the squared distance from the query to the leaf element

14: Update p and dbest

3.3 Making the kd-tree dynamic

The main goal of this project is the implementation of a different data

structure allowing us to perform the search in O(log2 n) instead of O(n). In

order to achieve this result we have been inspired by the Logarithmic method

exposed in [4]. This method allows to perform a preprocess of the input set

creating a data structure on it. By this, it is possible to answer any query

with much lower cost than if we did not have the structure, more precisely in

logarithmic time.

To achieve such result, we need to make our structure dynamic. Namely,

we want to support the insertion of elements of the search space in the

binary structure. This method assume that we have already designed a static

structure. Let the input set be initially empty, then we want to maintain a

semi-dynamic structure as new elements are inserted into the structure. Note

that in this context we refer to a semi-dynamic as to a structure over which

the insertion update is allowed, while the deletion update is not defined; this

simplification is possible because the dataset of our application only expands,

but never shrinks. Basically, the logarithmic method can convert a static

structure to a semi-dynamic structure. It consumes O(n) space, answers a

query in O(log2 n) time, and supports an insertion in O(log2 n) amortized

time.

Let n=|S| be the number of elements that have been inserted so far, then at

each iteration, S is divided into h = blog2 nc + 1 mutually disjoint partitions

S0, ..., Sh−1. Partition Si either is empty or must have size 2i ∀i ∈ [0, h− 1].

13

Let us call e the new element to be added to S. We first find i∗, i.e., the

smallest i 3 Si = ∅. Then

• If i∗ = 0 the set S0 is created with only e itself.

• If i∗ > 0 a new set Si∗ = e ⊕ S0 ⊕ S1 ⊕ ... ⊕ Si∗−1 is defined; then

S0, ..., Si∗−1 are cleared and the related k-d trees destroyed, while a new

k-d tree is built from scratch with the elements of Si∗ .

example 1. Consider the case in which the structure S contains 5 elements,

therefore the number of partitions is h = blog2 5c+ 1 = 3. Elements are stored

into S0, S1 and S2 according to the binary representation of n; the full structure

S is represented in figure 4.

Figure 4: Structure with 5 elements

Suppose now that a new element e needs to be inserted in S; each bit of 101

(the binary representation of n) is evaluated from right to left.

The first bit encountered is a 1: the element contained in S0 is stored and the

k-d tree deleted.

The second bit is 0: a k-d tree S1 is created. it contains the e and the element

previously contained in S0.

The obtained structure is represented in figure 5. Note that the k-d tree S2 is

not affected by this operation.

Figure 5: Structure with 6 elements

14

example 2. Consider now the situation in which 7 elements are already stored

in S, and a new one (e) needs to be inserted. In this case the starting binary

representation is 111. This implies that all ktrees are destroyed and and all the

elements are stored in a new k-d tree S3 along with the new element e. The

final result is depicted in figure 6.

Figure 6: Structure with 8 elements

The insertion procedure is summarized in algorithm 10.

Algorithm 10 Insertion(e)

1: initialize vector V

2: add e to V

3: for i ∈ [0, h− 1] do

4: if Si==∅ then

5: Si ← BuildKDTree(V)

6: break

7: else

8: add elements of Si to V

9: Si ← ∅

15

4 Simulations

In order to verify our results, we performed various simulations using

the HRP4 humanoid robot framework in the CoppeliaSim environment. We

compared the performance of the previous framework with the new framework

that uses K-D Trees for the Nearest Neighbor search. The test were performed

in two different scenarios, both in which the robot had to reach a goal region.

Since the footstep planner is randomized, to obtain a better comparison of the

results, we performed a set of 100 simulations for each combination of algorithm,

planner, scenario and time budget.

All the simulations have been performed on an Intel(R) Core(TM) i5-6200U

CPU running at 2.30 GHz (2 cores, 4 threads).

In the first scenario, named Corridor (fig. 7), in order to reach the goal region

the robot has to pass through a narrow corridor and then through a room that

has a little height variation with respect to the rest of the environment.

Figure 7: Corridor scenario

The second scenario, named Ditch (fig. 8), is a little more challenging with

respect to the above, since there are more height variations, of different entity.

Therefore, this represents an even greater challenge, since the robot cannot

execute steps of any height. This fact is clearly visible, since the path the robot

chooses doesn’t goes straight through the middle of the platform, but has to

pass through an intermediate platform on the top side of the map.

Figure 8: Ditch scenario

16

Tables 1 - 4 report some data obtained by averaging the results of the 100

simulations on each scenario with both the algorithm using the naive approach

to the nearest neighbor problem and with our algorithm using KD-Tree. We

tested those algorithms with RRT and RRT* planners with 1s, 5s, 10s and 25s

of time budget and also by stopping the planner as soon as a goal is found with

a max time budget of 100s.

Algorithm ∆T [s] Avg Cost Min Cost Max Cost Iters Tree Size Successes

avg: 1.786 67.530 48 102 7819.2 2044.9 100/100

1.0 61.933 42 83 5353.0 1657.9 30/100

Naive 5.0 68.147 47 95 15489.1 3160.4 95/100

10.0 66.293 48 101 21690.7 4785.9 99/100

25.0 67.610 46 100 37912.1 7427.4 100/100

avg: 0.679 70.420 48 99 8592.2 2302.6 100/100

1.0 66.822 51 91 12396.6 3213.4 90/100

KDTree 5.0 66.920 49 97 52497.2 10021.1 100/100

10.0 66.940 49 93 94667.8 16135.6 100/100

25.0 67.990 41 94 198823.4 30154.9 100/100

Table 1: Planner:RRT - Environment:Corridor

Algorithm ∆T [s] Avg Cost Min Cost Max Cost Iters Tree Size Successes

avg: 0.994 49.950 33 70 4855.8 1676.2 100/100

1.0 49.224 32 67 5518.1 1915.6 67/100

Naive 5.0 49.646 28 73 12332.1 3971.6 99/100

10.0 49.520 33 68 16501.8 5129.9 100/100

25.0 48.830 36 83 28750.6 8379.3 100/100

avg: 0.429 50.430 32 71 4895.5 1714.4 100/100

1.0 51.222 32 75 10029.7 3364.6 99/100

KDTree 5.0 49.770 34 64 35470.0 10344.6 100/100

10.0 49.110 31 74 52283.4 14658.4 100/100

25.0 48.830 30 65 124247.8 31255.7 100/100

Table 2: Planner:RRT - Environment:Ditch

The results show that there is an increment in performance with the new

algorithm for each combination of planner and time budget. This is because with

an improved nearest neighbor search, the planners are able to expand more the

tree and perform more iterations in the same amount of time, resulting in a

greater rate of success for both RRT and RRT* and in a lower average cost of

the footstep plan in the case of RRT*.

17

Algorithm ∆T [s] Avg Cost Min Cost Max Cost Iters Tree Size Successes

avg: 3.532 53.320 40 75 8886.2 2016.1 100/100

1.0 51.200 43 59 4084.2 1266.8 10/100

Naive 5.0 47.554 37 62 12041.7 2750.9 83/100

10.0 46.333 38 58 18056.9 3768.7 96/100

25.0 42.140 33 60 31126.4 5664.4 100/100

avg: 2.467 52.210 42 66 8432.9 2149.9 100/100

1.0 48.350 32 56 5055.4 1546.8 20/100

KDTree 5.0 46.913 36 62 16818.2 3886.8 93/100

10.0 42.619 34 55 25650.6 5386.4 97/100

25.0 38.390 32 53 53499.1 9670.2 100/100

Table 3: Planner: RRT* - Environment: Corridor

Algorithm ∆T [s] Avg Cost Min Cost Max Cost Iters Tree Size Successes

avg: 1.479 35.370 23 46 4938.2 1580.3 100/100

1.0 33.571 26 43 3851.1 1336.1 28/100

Naive 5.0 30.857 21 39 10376.2 3257.7 98/100

10.0 29.820 21 39 13654.8 4109.6 100/100

25.0 26.880 20 33 20044.4 5545.3 100/100

avg: 1.002 35.630 25 46 4817.2 1653.6 100/100

1.0 33.864 25 45 4932.5 1726.5 44/100

KDTree 5.0 28.270 20 38 14740.3 4616.4 100/100

10.0 26.650 19 33 22652.3 6767.9 100/100

25.0 24.010 18 35 39012.9 10325.3 100/100

Table 4: Planner: RRT* - Environment: Ditch

We also tested the RRT* planner in anytime modality with a time budget of

1s in both scenarios. The results are summarized in Table 5. Also in this case,

our algorithm was able to outperform the previous implementation. With the

same time budget it is able to expand the tree by more than double obtaining

a perfect rate of success while also having a smaller average cost.

Algorithm Environment Avg Cost Min Cost Max Cost Iters Tree Size Successes

Naive
Corridor 41.090 32 48 2672.6 1392.9 100/100

Ditch 27.730 21 34 2287.7 1157.9 100/100

KDTree
Corridor 38.730 32 50 3673.9 1762.7 100/100

Ditch 26.400 18 32 3254.6 1444.9 100/100

Table 5: Planner: RRT* Anytime - Time Budget: 1s

18

5 Conclusions

We have successfully implemented an algorithm for performing an efficient

nearest neighbor search in the context of path panning for humanoid robots.

The proposed solution make use of the logarithmic method, which is based on

k-dimensional trees stored in a semi-dynamic structure. Simulations in section 4

reveal satisfactory results, with both RRT and RRT∗ outperforming the previous

work in almost every metric.

The optimization of the nearest neighbor search becomes more and more

important as the paths to be planned become longer. This is because the the

time spent doing nearest neighbor search in sampling-based planners approaches

100% of the total time used by the planner as time approaches infinity. In

the figures below, we report the fraction of time spent performing the nearest

neighbor search with respect to the total time used by the RRT planner as

iterations grow.

In the figure [9], we can see that the Naive algorithm, uses a great amount of

time in during the search phase. In particular it grows very rapidly and reaches

more than 90% of the total time, which is not negligible.

Figure 9: Time spent doing NN search vs RRT total time using Naive algorithm

On the other hand, in figure [10] are reported the K-D tree results, and we

can notice that the time spent for the search, grows much slower than it was

doing in the previous case. In fact, it barely reaches 60% of the total time after 5

19

times the iterations of the naive case. This results in a remarkable improvement,

that was exactly the aim of this project.

Figure 10: Time spent doing NN search vs RRT total time using K-D Tree algorithm

Possible future improvements could be to further optimize the dynamic k-d

tree by avoiding too many rebuilds of the trees. Another optimization would

be implementing a delete method that would make the k-d tree fully dynamic,

allowing for more advanced techniques such as pruning the tree whenever it

becomes too big. Finally, another improvement could be allowing the leaves to

contain more than one data point.

20

References

[1] Paolo Ferrari, Nicola Scianca, Leonardo Lanari, Giuseppe Oriolo, An

Integrated Motion Planner/Controller for Humanoid Robots on Uneven

Ground, ECC 2019.

[2] Anna Yershova, Steven M. LaValle, Improving Motion-Planning Algorithms

by Efficient Nearest-Neighbor Searching, IEEE Transaction on Robotics, vol.

23, no. 1, February 2007.

[3] Jon Louis Bentley, James B. Saxe, Decomposable Searching Problems:

Static-to-Dynamic Transformation, Department of Computer Science,

Carnegie-Mellon University, 1980.

[4] Yufei Tao, Lecture Notes: The logarithmic method, Chinese University of

Hong Kong, 2012.

[5] Sunil Arya, David M. Mount, Algorithms for Fast Vector Quantization, Proc.

IEEE Data Compress. Conf., Mar. 1993, pp.381-390.

[6] Sertac Karaman, Matthew R. Walter, Alejandro Perez, Emilio Frazzoli,

Anytime Motion Planning using the RRT*, IEEE International Conference

on Robotics and Automation, ICRA 2011.

[7] Sertac Karaman, Emilio Frazzoli, Incremental sampling-based algorithms for

optimal motion planning, Proc. Robotics: Science and Systems (RSS), 2010.

[8] Michal Kleinbort, Oren Salzman, Dan Halperin Collision detection or

nearest-neighbor search? On the computational bottleneck in sampling-based

motion planning, Algorithmic Foundations of Robotics XII: Proceedings of

the Twelfth Workshop on the Algorithmic Foundations of Robotics, pag.

624–639, 2016.

21

	Introduction
	Sampling-Based Planning
	RRT
	RRT*
	Anytime
	Footstep Planning

	Nearest Neighbor
	Naive algorithm
	Static k-d tree
	Making the kd-tree dynamic

	Simulations
	Conclusions

