
Planning and Executing Humanoid Gaits
in a World of Stairs

Facoltà di Ingegneria dell’Informazione, Informatica e Statistica

Corso di Laurea Magistrale in Artificial Intelligence and Robotics

Candidate

Michele Cipriano
ID number 1764645

Thesis Advisor

Prof. Giuseppe Oriolo

Academic Year 2018/2019

Thesis defended on 21 January 2020
in front of a Board of Examiners composed by:

Prof. Daniele Nardi (chairman)
Prof. Febo Cincotti
Prof. Alessandro De Luca
Prof. Giuseppe Oriolo
Prof. Simone Scardapane

Planning and Executing Humanoid Gaits in a World of Stairs
Master thesis. Sapienza – University of Rome

© 2020 Michele Cipriano. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: January 15, 2020

Author’s email: cipriano.1764645@studenti.uniroma1.it

mailto:cipriano.1764645@studenti.uniroma1.it

A mamma e papà.

v

Acknowledgments

Desidero ringraziare il Professor Giuseppe Oriolo per aver seguito il mio lavoro
durante lo sviluppo della tesi, per i suoi consigli e per il tempo che ha dedicato a
questo progetto. Ringrazio Paolo Ferrari e Nicola Scianca per tutte le chiacchierate
sul planner e sull’MPC e per avermi aiutato durante gli esperimenti. Ringrazio
Vincenzo e Emanuele per i numerosi consigli sul NAO e su BHuman. Ringrazio
Filippo per tutti i suggerimenti e le discussioni sui robot umanoidi.

Ringrazio tutte le persone che ho conosciuto al DIAG, che hanno reso questo
periodo fantastico. Ringrazio Tiziano, per i famosi caffè delle otto. Ringrazio
Giuseppe, per avermi fatto appassionare ai controlli. Ringrazio Gabriele, Luigi,
Luca, Eric, Ivan e tutta la “Egyptian crew” per tutti i bellissimi momenti passati
insieme. Ringrazio Roberto, Giovanni, Andrea e Riccardo per la folle esperienza
dell’hackathon a Torino.

Ringrazio Giulia, il mio grande amore, che mi ha accompagnato in questa
avventura sin dal primo giorno, per tutto il tempo che abbiamo passato insieme, per
tutte le serate, per tutti i weekend, per tutte le emozioni, e per avermi insegnato che
spesso i punti di vista devono essere obiettivi. Ringrazio Iacopo, che considero da
sempre un fratello, per tutte le giornate passate assieme in questi anni. Ringrazio
Arianna, la mia sorellina, per essere stata al mio fianco in ogni momento della
mia vita. Ringrazio nonno Aurelio, per tutte le passeggiate e tutte le volte che
abbiamo cantato insieme. Il rigraziamento più grande va ai miei genitori, per avermi
sostenuto in tutte le mie scelte e per tutti i sacrifici che hanno fatto da sempre.
Senza di loro tutto ciò non sarebbe stato possibile ed è per questo che gliene sarò
eternamente grato.

vii

Abstract

The thesis considers a scenario in which a humanoid robot needs to walk in an
unknown World of Stairs environment, namely an uneven ground composed by
horizontal patches located at different heights. The approach considers three stages:
mapping, off-line footstep planning and on-line gait generation. The mapping stage
is based on a framework called elevation_mapping, that provides a representation
of the envionment known as elevation map. The planning stage is based on Rapidly
Exploring Random Trees (RRTs), which efficiently searches for a footstep sequence.
The gait generation uses a Variable Height CoM Intrinsically Stable MPC, that
allows walking on uneven ground. The implementation of the proposed architecture
has been tested on both simulated dynamic environment and NAO humanoid robot,
which has been equipped with a depth camera.

ix

Contents

1 Introduction 1
1.1 Humanoid Robots . 2
1.2 Legged Robot Locomotion . 5

1.2.1 Localization and Mapping . 5
1.2.2 Planning . 6
1.2.3 Control . 6

1.3 Thesis Overview . 7

2 Elevation Map Generation 9
2.1 Framework . 10

2.1.1 Definitions . 10
2.1.2 Map Update . 11
2.1.3 Map Fusion and Dynamic Environments 11

2.2 ASUS Xtion Pro . 12
2.3 World of Stairs . 12

3 RRT-based Footstep Planning 17
3.1 Problem Formulation . 17

3.1.1 Notation and Plan Feasibility 17
3.2 Algorithm . 18

3.2.1 Pseudocode . 18
3.3 Implementation . 19

3.3.1 Catalogue of Primitives . 19

4 Variable Height CoM IS-MPC 23
4.1 3D Motion Model . 23
4.2 LIP . 24
4.3 Variable Height CoM Motion Model 25
4.4 MPC Formulation . 26

x Contents

4.4.1 ZMP constraints . 27
4.4.2 Stability constraint . 29

4.5 MPC Algorithm . 30
4.6 BHuman Implementation . 31

5 Experiments 33
5.1 NAO and Computer Settings . 34
5.2 Simple Staircase . 35
5.3 Multiple Staircases . 39

5.3.1 Upstairs . 39
5.3.2 Downstairs . 39

5.4 Obstacle Avoidance . 39
5.5 Stair Climbing in Unknown Environment 44

6 Conclusion 51
6.1 Results . 51
6.2 Future Works . 51

1

Chapter 1

Introduction

One of the biggest challenges in modern research is the study and the development
of humanoid robots. Building a machine that is capable of executing the same tasks
that the humans do is of fundamental importance for the future of our society, freeing
people from dangerous and laborious jobs, increasing productivity and well-being.
The idea of replicating the characteristics of the human body has fascinated humanity
since the conception of Leonardo’s Robot (1495) by Leonardo Da Vinci [1]. Human
knowledge has advanced so much in the last centuries that the dream of building a
machine that resembles the human body has finally become true.

This chapter introduces humanoid robots, giving an overview of the technology
that has been developed in the last decades and a comparison to other robots
such as manipulators and unmanned ground vehicles. The problem of legged robot
locomotion is then discussed, describing the current state-of-the-art research, the
modules that allow a humanoid robot to safely move inside a specific environment,
such as localization, mapping, planning and control, and the way they seamlessy
work together in order to realize humanoid gaits.

Even if humanoid robots are nowadays capable of realizing astonishing tasks,
many challenges are yet to be solved before their introduction in our society, making
them part of our daily life. The goal of this thesis is that of studying humanoid robot
locomotion in a world known as World of Stairs, where the environment surrouding
the robot is composed of horizontal patches located at different heights [2]. This
chapter concludes by presenting an overview of the thesis, discussing its structure
and the content of each chapter.

2 1. Introduction

1.1 Humanoid Robots

The development of humanoid robots started in 1967 with the WABOT-1 [3], shown
in Fig. 1.1a, created by Waseda University. WABOT-1 is the first anthropomorphic
robot able to walk with its limbs and carry objects with its hands. It was also
equipped with a vision and a communication system that allowed it to communicate
with people in Japanese. The most famous humanoid robot is probabily ASIMO [4],
developed by HONDA (Fig. 1.1b). Its development started in the 1980s and it was
preceded by many different version before being presented in 2000. The last version
of ASIMO is 130 cm tall and is able to recognize objects, gestures, sounds and faces,
making it able to interact with humans. It is equipped with multiple sensors such as
laser and infrared that allow it to navigate autonomously. ASIMO is able to walk
and run up to a speed of 9 km/h with an autonomy of one hour. Another very
famous robot is NAO [5], which development has been started by Aldebaran and
continued by Softbank after its acquisition. NAO (Fig. 1.2a) is the official robot
used in the RoboCup [6] Standard Platform League, an international competition
that consists in a soccer tournament where the teams are composed of 5 robots. The
goal of RoboCup is that of winning against a FIFA World Cup winner team by 2050.
Most recent and advanced humanoid robots includes iCub [7], shown in Fig. 1.2b,
designed by the RoboCub Consortium and built by Italian Institute of Technology,
with the idea of being a research platform for cognitive robotics; ATLAS (Fig. 1.3a),
developed by Boston Dynamics for emergency service and rescue operations, such as
those described by DARPA Robotics Challenge [8], illustrated in Fig. 1.4; Valkyrie
(Fig. 1.3b), developed by NASA with the aim of advancing human spaceflight and
extraterrestrial exploration [9].

Unlike other traditional robots, such as industrial manipulators (Fig. 1.5a) or
wheeled mobile robots (Fig. 1.5b), humanoid robots are capable of handling a larger
number of scenarios, such as rescue operations and space exploration, described
above, but also classical ones that are part of our daily life, namely all the activities
that humans perform during the day, that go from the manipulation of simple objects
to communication. Humanoids are able to cover all these tasks because of their
similarity to the humans, allowing them to interact with our environment and with
other people. In order to successfully perform these tasks, humanoid robots need to
properly move inside complex environments.

1.1 Humanoid Robots 3

(a) (b)

Figure 1.1. WABOT-1 [3] on the left, the first anthropomorphic robot. ASIMO [4] on the
right.

(a) (b)

Figure 1.2. NAO v6 [5] on the left, used in RoboCup Standard Platform League. iCub [7]
on the right, a cognitive robotics research platform.

4 1. Introduction

(a) (b)

Figure 1.3. ATLAS, on the left, and Valkyrie [9], on the right, have been developed with
the purpose of advancing rescue operations and space exploration missions.

Figure 1.4. Typical scenarios described by DARPA Robotics Challenge [8], where the
human intervention is dangerous and could put at risk life of rescuers.

1.2 Legged Robot Locomotion 5

(a) (b)

Figure 1.5. On the left, KUKA LWR [10], a famous industrial manipulator. On the right,
HEAP [11], an autonomous hydraulic walking excavator.

1.2 Legged Robot Locomotion

The problem of humanoid robot locomotion, or more in general legged robot locomo-
tion, consists in developing algorithms that allow humanoids to safely move inside an
environment. In order to successfully perform this task, a humanoid robot needs to
understand the structure of the surrounding environment and its configuration with
respect to the world. Once a representation of the environment has been created,
the robot needs to plan its motion in order to move without colliding with obstacles
and without compromizing its integrity. The plan needs to be correctly executed,
keeping the robot in equilibrium, avoiding falls and collisions. These are the most
important characteristics that allow a sound generation of humanoid gaits.

A typical humanoid robot locomotion pipeline consists in a localization module,
that determines the configuration of the robot with respect to the world; a mapping
module, that determines a representation of the world that can be used efficiently
by the robot; a planning module, that uses the configuration of the robot and the
configuration of world in order to generate a plan that allows the humanoid to move
from its configuration to a specified one; a control module, that guarantees that the
motion generated by the planning module is correctly executed.

1.2.1 Localization and Mapping

The purpose of localization is to provide the pose of the robot with respect to the
world. Localizing accurately is of fundamental importance in order to guarantee
that the robot behaves in a correct way during the execution of its tasks. The
introduction of advanced sensors, such as IMU (accelerometer, gyroscope), RGB-D

6 1. Introduction

cameras, LIDAR and sonars, makes it possible to observe the surrouding environment
and consequently to localize the robot. Many different techniques can be used for
robot localization, such as particle filters [12], Extended Kalman Filters [13] and
V-SLAM [14].

The purpose of mapping is to provide a representation of the environment that
can be used to make the robot navigate. A mapping program should be able to
recreate the world with enough details to make locomotion safe. Moreover, the
implementation should be efficient enough to provide the map in real-time. These
characteristics are essential to make the robot truly autonomous. The most used
representations are elevation maps [15], which store the map as a grid such that for
each point (x, y, z) on the surface there exists a cell (x, y) in the grid that stores the
corresponding height z, and OctoMaps [16], a representation based on octrees that
efficiently determines if a point in space is occupied or free.

1.2.2 Planning

A planning algorithm consists in generating a sequence of motion primitives that
allow a robot to move from its current location to a desired one. In order to
generate this sequence, the planner needs a map that represents the environment.
Regarding humanoid robots, most famous planning approaches generate sequence
of consecutive footsteps that the robot should follow in order to reach the desired
goal. There exists a variety of techniques based on heuristic search, such as A* [17],
that provides an optimal plan, and ARA* [18], that provides a suboptimal plan
but is faster than the previous method. Other techniques are optimization-based,
i.e. they generate a plan by solving an optimization problem, such as [19], that
solves a quadratic programming (QP) problem, and [20], that solves a mixed-integer
quadratically-constrained quadratic programming (MIQCQP) problem. Another
family of algorithms are sampling-based and generates a tree of footstep configuration
randomly, for example by using Rapidly-Exploring Random Trees (RRTs) [2].

1.2.3 Control

Once a footstep plan has been generated, the robot needs to execute it without
falling. Here, a motion model is needed to describe the behaviour of the system.
Usually, since the dynamics of the humanoid robots is complex, a simplified once
is used, such as the dynamics of the Linear Inverted Pendulum (LIP) [21]. The
introduction of the LIP allowed the development of control modules that generate
humanoid gaits. The most famous works include the Preview Control [22], which
uses a dynamic extension of the Cart-Table model solving a LQR problem; the

1.3 Thesis Overview 7

kinematic
control

intrinsically
stable MPC

direct
kinematics

footstep
planner

elevation
mapping

Figure 1.6. Block scheme of the approach.

Model Predictive Control (MPC) [23], which constraints ZMP to keep the robot
balanced, solving a QP problem; the Intrinsically-Stable MPC (IS-MPC) [24], which
guarantees to produce stable CoM trajectories by constraining both the ZMP and the
unstable mode of the LIP. After the generation of a desired trajectory, a kinematic
controller is responsible for execution of the motion task at the lowest level.

1.3 Thesis Overview

The goal of the thesis is that of studying humanoid robot locomotion in a world
known as World of Stairs, a particular uneven ground composed by horizontal
patches located at different heights [2]. The idea is that of making NAO humanoid
robot walk in a complex scenario, making it climb stairs and avoid obstacles. The
robot needs to autonomously perceive the surrouding world, create a representation
of the environment, generate a plan that allows the robot to safely reach a specified
region of the world and correctly execute the motion. The robot has been equipped
with an RGB-D sensor, which has been mounted on its head.

The approach is to use the depth sensor of the camera in order to generate
an elevation map of the environment. To do this, elevation_mapping [25] has
been used. Once the map has been created, a footstep planner based on RRT [2]
generates a sequence of footsteps with the respective swing foot trajectories (taking
into account collisions and the limitations of the robot) that allow the robot to
reach a desired final position. To guarantee that the motion is properly executed,
a Variable-Height CoM IS-MPC [26] is used to generate a trajectory of the CoM
of the robot. In the end, a pseudo-inverse based kinematic controller computes the
joint commands of the robot needed to execute the motion. Fig. 1.6 illustrates a
block scheme of the described approach.

This thesis extends [2], providing an implementation of the Variable-Height CoM
IS-MPC for a real humanoid robot (NAO), extending the RRT-based footstep planner
to work in a real environment with NAO and introducing elevation_mapping

8 1. Introduction

(directly extending the block scheme of [2]) in order to generate an elevation map
of the terrain, making NAO able to execute gaits in a World of Stairs unknown
environments.

Chapter 2 introduces elevation_mapping, describing the framework and its
integration with the camera, the planner and the robot. Chapter 3 describes the
RRT-based footstep planner introduced in [2], formulating the problem, the algorithm
and discussing its integration with NAO. Chapter 4 describes the Variable-Height
CoM IS-MPC and the implementation on the BHuman framework [27]. Chapter 5
presents the experiments performed on the robot in different scenarios, using the
three modules described in the previous three chapters. Chapter 6 concludes the
thesis by summarizing the obtained results and discussing future works.

9

Chapter 2

Elevation Map Generation

When dealing with robot locomotion, the representation of the environment plays
a fundamental role. It is, in fact, extremely important to properly understand the
structure of the world in order to safely make the robot move, avoiding obstacles
and dangerous zones, and to make it successfully complete its tasks. The world
that surrounds the robot can be represented in many different ways; it is important
to choose a proper representation to keep computational costs low and to make
locomotion realizable.

In World of Stairs scenarios, introduced in the previous chapter, the most efficient
way to represent environments is by using elevation maps. An elevation map is a
grid that contains for each coordinate (x, y) of the world its respective coordinate z.
Hence, it can be seen as a function Mz such that, for each element i of the grid,
zi =Mz(xi, yi). This kind of representation enables the development of planners
that quickly find plans to make robots move from a position to another inside the
world.

This chapter introduces elevation_mapping [25], the framework used in this
thesis to generate elevation maps, which allow NAO to navigate in unknown envi-
ronments (more precisely in World of Stairs environments); the ASUS Xtion Pro,
an RGB-D sensor equipped on top of NAO, which has been used to send depth
informaton to elevation_mapping; the behaviour of the framework when a map
is build using the ASUS Xtion Pro placed on the head of NAO humanoid robot.
The generated map is the one used in the experiment “Stair Climbing in Unknown
Environment”, described in Section 5.5, and it is used by the footstep planner
(Chapter 3) to make NAO climb the stairs.

10 2. Elevation Map Generation

2.1 Framework

elevation_mapping [25] is a framework that allows to create elevation maps in
rough environments using proprioceptive localization and distance sensors of the
robot in real-time. The generated map is robot-centric, meanining that the map is a
local representation of the environment that surrounds the robot. Using a robot-
centric representation instead of a world-centric one (where the map is expressed with
respect to an inertial frame) has the advantage of not depending on the global pose
of the robot. This allows to avoid problems related to drift in the state estimation
which would cause the maps to be inconsistent and not accurate enough to be used
for locomotion.

The framework represents the map as a grid, providing for each cell a probabilistic
distribution of the height of the terrain in the corresponding position. The map is
updated using range measurements, provided by a sensor mounted on the robot, and
the motion of the robot, provided by a localization module such as a Kalman filter.
The program supports dynamic environments and it is built in C++, providing a
ROS [28] interface which makes it simple to be integrated with external sensors and
other programs. elevation_mapping is built upon GridMap [29], which efficiently
manages 2D grid representations.

Even if not all the characteristics of the framework have been used in this thesis,
the choice to integrate elevation_mapping into the project has been essential to
quickly build elevation maps that can be used by a footstep planner (Chapter
3). Moreover, its versatility (because of the ROS interface) and its capabilities to
generate efficiently maps for rough and dynamic environments, set a good starting
point to extend this project to more complex scenarios. This section gives a brief
overview of the framework without describing all the features in detail, thoroughly
described in [25].

2.1.1 Definitions

The notation of the reference frames used by the framework are illustrated in Fig.
2.1. In particular, I is the inertial frame, B is the base frame, S is the sensor frame
and M is the map frame. The inertial frame I is considered to be fixed with respect
to the terrain. Both the base frame B and the sensor frame S are attached to the
robot and it is assumed that the transformation (rBS ,ΦBS) between the two is
known in advance. The elevation map is attacched to the reference frame M . B
and M are related through a transformation (rBM ,ΦBM) given by the user. The z
axis of the map frame M and the inertial frame I are always aligned. A cell i of the

2.1 Framework 11

Figure 2.1. The figure shows the notation of the reference frames used by
elevation_mapping. [25] together with the robot moving inside a rough environment.

elevation map corresponding to the point of the surface Pi = (xi, yi, ĥi), which is
expressed with respect to M . The transform (rIB,ΦIB) between the position of the
robot B and the inertial frame I is provided by a state estimation module.

2.1.2 Map Update

The map is updated when new measurements are read by the distance sensor and
when the localization module updates the position of the robot. Each measurement
rS SP in the sensor frame S is first transformed into the corresponding height

measurement p using the kinematic representation described before (Fig. 2.1). The
new height measurement can be represented as a Gaussian probability distribution
p̃ ∼ N (p, σ2

p) given the sensor noise model [30]. In this way, it is possible to update
the current estimate of the height N (ĥ, σ2

h) by using a 1D Kalman filter, obtaining
a new estimate of the height N (ĥ+, σ2+

h). The filter is updated only if the new
measurement is not too far away (in terms of Mahalanobis distance) from the current
estimate.

The height estimate of each cell needs to be updated also during motion in order
to take into account the uncertainty of the motion itself. To speed up the process,
each cell i is extended with a spatial covariance matrix ΣPi that, in addition to the
uncertainty of the height σ2

hi
, considers the uncertainty along the x and y axes.

2.1.3 Map Fusion and Dynamic Environments

The map fusion step is performed whenever required and it consists in transforming
the elevation map data from a probabilistic representation of the kind N (ĥi,ΣPi)
to a deterministic representation (ĥi, hi,min, hi,max), where the values hi,min, hi,max

respectively represent the lower and the upper bound of the height estimation such
that hi has 95% probability of being in the range [hi,min, hi,max]. In this thesis the

12 2. Elevation Map Generation

Figure 2.2. The ASUS Xtion Pro [32] is equipped with a depth sensor and it is
easily configurable to make it work with ROS. This simplifies the integration with
elevation_mapping and, consequently, the construction of a navigable map.

fused map is used by the footstep planner (Chapter 3) to generate a plan for the
robot, similarly to [31].

elevation_mapping handles dynamic environments by performing a visibility
check based on ray tracing. Since this is a computationally expensive task, it is
performed in parallel to the data acquisition process and it is run at a low frequency (1
Hz).

2.2 ASUS Xtion Pro

The camera (Fig. 2.2) used in this thesis is an ASUS Xtion Pro [32], which is
equipped with a depth sensor, used to generate the height measurements sent to
elevation_mapping. The communication between the camera and the mapping
framework is handled by ROS. ASUS Xtion Pro works up to a resolution of 640×480
at 30 fps. Its working range is from 0.5m up to 3.5m. The camera has been calibrated
with a tool called camera_calibration [33].

2.3 World of Stairs

The integration between elevation_mapping and the ASUS Xtion Pro allows to
easily generate elevation maps in rough environments, meaning that the same settings
could be used to generate elevation maps for World of Stairs scenarios, described in

2.3 World of Stairs 13

the previous chapter.
As mentioned before, ROS simplifies the communication between the camera

and the mapping framework, allowing to develop a block scheme (Fig. 1.6) that
connects the camera to the robot. The humanoid robot used in this thesis is NAO,
shown in Fig. 2.3a where it has been equipped with the ASUS Xtion Pro.

The World of Stairs scenario considered for the experiments is the one shown in
Fig. 2.3b, where the robot stands in front of a stairway. The idea is to position the
camera towards the stairs in order to generate an elevation map accurate enough to
be used by a footstep planner (Chapter 3). Given the pose of the camera, which is
sent to elevation_mapping together with the depth information of the camera, it
is possible to quickly generate a map. Of course, the area underneath the robot can
not be seen by the camera. That is why a “safe zone” is manually added to the final
elevation map before sending it to the planner. Fig. 2.5 shows the map generated by
the framework (together with the “safe zone”) when the camera is oriented towards
the stairs (as in Fig. 2.4). The generated map is the one used by the footstep planner
in the scenario “Stair Climbing in Unknown Environment”, described in Section 5.5,
where NAO is able to climb the stairs in an unknown environment.

14 2. Elevation Map Generation

(a) (b)

Figure 2.3. On the left, NAO humanoid robot with ASUS Xtion Pro placed on top. On
the right, NAO humanoid robot in the environment described in Section 5.5, right before
starting the execution of the experiment.

Figure 2.4. RGB image seen by the ASUS Xtion Pro placed on top of the robot. The
corresponding depth image is sent to elevation_mapping to build the map.

2.3 World of Stairs 15

Figure 2.5. Elevation map build by elevation_mapping for the scenario “Stair Climbing
in Unknown Environment” described in section 5.5.

17

Chapter 3

RRT-based Footstep Planning

Considering the World of Stairs scenarios discussed previously, the aim of a footstep
planner is to determine a feasible sequence of footsteps that allows the humanoid
robot to reach a desired goal region G, given a representation of the environment, in
this case the elevation map described in the previous chapter.

This chapter presents a footstep planner based on Rapidly Exploring Random
Trees (RRTs), presenting its algorithm and discussing its integration into the project
architecture.

3.1 Problem Formulation

Before describing the algorithm, introduced in [2], a more detailed formulation of
the problem should be given.

3.1.1 Notation and Plan Feasibility

As introduced before, an elevation map is a proper choice for the representation
of the scenarios described by World of Stairs, since it is efficient to store and to
query. Let the map be denoted byMz. The height from the ground of a cell having
coordinate (x, y) is z =Mz(x, y).

Given Mz, the goal of the footstep planner is to find a feasible sequence of
footsteps {f j} which leads to a desired location G, together with the corresponding
swing foot trajectories {pjswg}. Let f j = (xjf , y

j
f , z

j
f , θ

j
f)T be the pose of the j-th

footstep, with (xjf , y
j
f , z

j
f) the position of the footstep and θjf the yaw orientation of

the footstep. Note that in the scenarios represented by World of Stairs the roll and
pitch angles of the footsteps are always zero.

In order to make the footstep plan feasible, the following requirements are
introduced:

18 3. RRT-based Footstep Planning

R1 The height variation between two consecutive footsteps is with a maximum
range: |zjf − z

j−1
f | ≤ ∆zmax.

R2 The footstep is fully in contact with the ground, hence, each cell ofMz which
belongs to the footprint has the same height zjf .

R3 The swing foot trajectory pjswg is collision free (apart of course at the start
and at the end of the trajectory itself).

Once the footsteps have been generated, they are passed to an online gait
generation block (described in Chapter 4) which computes the optimal CoM trajectory
p∗CoM that allows the humanoid robot to execute the plan. The optimal swing foot
trajectory p∗swg is defined by the appropriate subtrajectory pjswg.

3.2 Algorithm

The following algorithm [2], which is based on RRT (Rapidly Exploring Random
Tree), finds a feasible sequence of footsteps in a World of Stairs scenario given
the elevation map Mz of the environment, the goal region G and the starting
configuration of the feet fL,fR. The generated sequence connects the starting point
to the goal.

3.2.1 Pseudocode

The footstep planner, whose behaviour is described by Algorithm 1 iteratively
builds a tree T of feet configurations in a randomized way. In general, a vertex
v = (f sup,f swg) specifies the pose of the support foot and the swing foot during the
phase of double support. An edge connecting two vertices exists when there exists a
collision free trajectory of the swing foot between the two configurations.

The algorithm starts by initializing the tree with the initial configuration of the
left and the right foot (line 1). At each iteration, a point prand is selected randomly
on the ground (line 5). Here, the planner randomly choose between exploration and
exploitation mode. In the first case prand is generated by randomly selecting a pair
of coordinates x, y and retrieving the z corrdinate from the elevation mapMz. In
the second case prand is sampled from G. At this point, the vertex vnear of T that is
closest to prand is selected (line 6) in order to check whether it can be connected to
the tree T . The distance between vnear and prand is determined using the following
metric:

γ(v,p) = d(m,p) + α|θp| (3.1)

3.3 Implementation 19

where d(m,p) is the Euclidean distance between the midpoint m between the feet
(hence, between f sup and f swg in v) and p, θp is the angle between the robot sagittal
axis (determined by the average orientation of the feet) and the line joining m to p,
and α > 0. Once vnear has been selected, the foot poses fnear

sup ,f
near
swg are extracted

from it. A candidate footstep f cand is randomly generated (line 7) by selecting a
final pose of the swing foot from the catalogue of primitives U defined with respect
to fnear

sup , as shown in Fig. 3.1 and defined in the next section. As before, the z
coordinate of f cand is determined byMz. On line 8, requirements R1-R2 defined
above are checked for f cand. In positive case, a collision checking algorithm (lines
9-13) is performed to verify whether there exists a collision free trajectory pcand

swg (a
second degree polynomial equation) that brings the swing foot from fnear

swg to f cand.
In positive case, also requirement R3 is verified and a new vertex vnew = (f cand,fnear

sup)
is added to the tree T as a child of vnear (lines 14-17). The algorithm terminates
when the midpoint m between the feet at the new vertex vnew is inside the goal
region G or a maximum number of iterations imax has been reached (line 18). When
a solution has been found, the path joining the initial vertex (fL,fR) to vnew is
extracted from the tree and the footstep sequence {f j} is reconstructed together
with the swing foot trajectories {pjswg}.

3.3 Implementation

The planner has been implemented in C++ and it has been tested on both dynamic
environments and NAO humanoid robot. The elevation map is either generated
by the elevation_mapping framework or manually generated before the execution
of the program. Experiments are described in detail in Chapter 5. Note that to
simplify the communication between elevation_mapping and the planner and the
communication between the planner and the robot, the planner has been executed
on an external computer, which is connected to the robot through an ethernet cable.
The plan is sent through TCP. The communication is designed with the idea to
extend the planner in order to handle replanning phases and dynamic environments.
5

3.3.1 Catalogue of Primitives

As mentioned before, the catalogue of primitives specifies the possible footsteps
that the robot can perform at each step. In this thesis the catalogue for the NAO
humanoid robot (left foot with respect to right foot) has been defined as:

(x, y, θ) ∈ {−6.0, 0.0, 6.0, 8.0, 10.0} × {11.0, 12.0} × {0, π/12} (3.2)

20 3. RRT-based Footstep Planning

Algorithm 1: Footstep Planner
1 root the tree T at vini ← (fL,fR);
2 i← 0;
3 repeat
4 i← i+ 1;
5 generate a random point prand on the ground;
6 select the closest vertex vnear in T to prand according to γ(·,prand);
7 randomly select from the primitive catalogue U a candidate footstep

f cand;
8 if f cand is feasible w.r.t. R1–R2 then
9 h← hmin;

10 pcand
swg ← BuildTrajectory(fnear

swg ,f
cand, h);

11 while h ≤ hmax and Collision(pcand
swg) do

12 h← h+ ∆h;
13 pcand

swg ← BuildTrajectory(fnear
swg ,f

cand, h);

14 if h ≤ hmax then
15 vnew ← (f cand,fnear

sup);
16 add vertex vnew to T as a child of vnear;
17 compute midpoint m between the feet at vnew;

18 until m ∈ G or i = imax;

3.3 Implementation 21

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
x [m]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05
y

[m
]

Figure 3.1. The catalogue of primitives (blue color) specifies the possible poses of the
candidate footstep f cand with respect to the pose of the current support foot fnear

sup . The
figure shows the case where the left foot is the support foot. The catalogue for the case
where the right foot is the support foot is specular. The z coordinate of a candidate
footstep can be retrieved directly from the elevation mapMz.

The catalogue of primitives of the right foot with respect the left foot is symmetric
and it is shown in Fig. 3.1. The footstep planning hyperparameters have been set
in the following way: the goal region has been defined as a circle of radius 0.01m,
α = 1, ∆zmax = 0.045m, hmin = 0.02m, hmax = 0.07m, ∆h = 0.01m. The resolution
ofMz has been set to 0.01m when using maps generated by elevation_mapping

and to 0.02m when using maps generated manually.

23

Chapter 4

Variable Height CoM IS-MPC

Before describing in detail the model [26] that allows humanoid robots to walk on
uneven terrain (in this case World of Stairs), it is important to introduce the notation
and to make an overview of the previous works. Differently from manipulators, which
are fixed to the ground, humanoids need to maintain equilibrium while walking.
The contact with the ground is, in fact, continuously changed due to walking itself.
Usually, this is achieved by making sure that the ZMP (Zero Moment Point) is always
within the convex hull of the support polygon. The ZMP, introduced in [34], is the
point where the horizontal component of the moment of the ground reaction forces
becomes zero. To generate this kind of motion, usually a simplified model which only
considers the CoM (center of mass) of the robot is used. In particular, by neglecting
the robot angular momentum and by assuming the CoM height is constant, the
CoM dynamics can be treated as a LIP (Linear Inverted Pendulum), introduced for
the first time in [21]. The Linear Inverted Pendulum model easily allows to design
control schemes for the generation of the CoM reference trajectory, like the Preview
Control [22] and the Model Predictive Control [23]. Before discussing the LIP and
extending it to the Variable Length Inverted Pendulum, the 3D motion model of
the CoM is introduced. It is important to remind that the CoP (Center of Pressure)
in case of flat ground is the point of application of the ground reaction force.

4.1 3D Motion Model

Let (xz, yz, zz) and (xc, yc, zc) respectively be the position of the ZMP and the
position of the CoM. Assuming that the humanoid robot is walking on flat ground
(hence the gravity acceleration components on x and y are zero) and neglecting
the angular momentum around the CoM, the ZMP can be anywhere along the line
connecting the CoP (located on the piece of surface upon which the support foot is

24 4. Variable Height CoM IS-MPC

CoM

xcxz

zc

zz

CoP

ZMP

x

z

Figure 4.1. When walking on flat ground, or more in general on piecewise-horizontal
ground as in the figure, the ZMP can be anywhere between the line connecting the CoP
and the CoM.

placed) and the CoM (Fig. 4.1), it is possible [35] to obtain the dynamics of the
CoM:

ẍc = z̈c + g

zc − zz
(xc − xz) (4.1)

ÿc = z̈c + g

zc − zz
(yc − yz) (4.2)

z̈c = fz
m
− g (4.3)

where g is the gravity acceleration, fz is the z-component of the ground reaction
force, acting as an external input, and m is the total mass of the humanoid robot.
The condition for maintaining equilibrium is that CoP is internal to the support
polygon. Since the CoP, the CoM and the ZMP are colinear, as shown in Fig. 4.2,
the condition is equivalent to the ZMP being internal to the polyhedral cone having
CoM as vertex and support polygon as cross-section.

4.2 LIP

The above motion model is nonlinear and difficult to use for gait generation. Usually,
to make the model linear, it is assumed that the ground is horizontal and the CoM

4.3 Variable Height CoM Motion Model 25

CoP

ZMP

CoMCoMz y

x

Figure 4.2. The CoP should be internal to the support polygon, which is equivalent to the
ZMP being internal to the polyhedral cone with the CoM as a vertex.

has constant elevation with respect to the ground (i.e. zc = z̄c). As a consequence,
it is possible to set zz = 0 making the CoP and the ZMP coincident, hence obtaining
the LIP model:

ẍc = ω2
0(xc − xz) (4.4)

ÿc = ω2
0(yc − yz) (4.5)

where ω2
0 = g/z̄c. This linear model, however, is not suitable for gait generation over

uneven terrain.

4.3 Variable Height CoM Motion Model

Requiring the CoM to move at a constant height is not the only way to make the
system linear. A more general way is to constraint its vertical motion such that:

z̈c + g

zc − zz
= ω2 (4.6)

with ω arbitrary constant.
Using the above equation, the CoM dynamics become:

ẍc = ω2(xc − xz) (4.7)

ÿc = ω2(yc − yz) (4.8)

z̈c = ω2(zc − zz)− g (4.9)

The above equations are linear and have a LIP-like structure with the ZMP coor-
dinates (xz, yz, zz) acting as control inputs. This 3D model, against the model of

26 4. Variable Height CoM IS-MPC

the LIP described in Eqs. (4.4-4.5), allows vertical motion of the CoM, thus, it can
be used for gait generation on uneven terrain, considering the balance condition
described by Fig. 4.2.

4.4 MPC Formulation

Before describing an MPC scheme for gait generation based on the above equations,
it is important to notice that all of them include an unstable subsystem. For example,
considering Eq. (4.7), it is possible to decompose the system into a stable and an
unstable subsystem by performing the following change of coordinates:

xs = xc − ẋc/ω (4.10)

xu = xc + ẋc/ω (4.11)

The dynamics of xu is:

ẋu = ẋc + ω(xc − xz) (4.12)

which is unstable. It is however possible to prove [36] that xu, and consequently xc,
will not diverge if a certain initial condition is satisfied (discussed in section 4.4.2).
The same reasoning applies for the other two variables.

Considering a dynamic extension and choose the control variable as the ZMP
velocities ẋz, ẏz, żz rather than the ZMP itself, on the x axis, the motion model
becomes:

ẋc

ẍc

ẋz

 =

0 1 0
ω2 0 −ω2

0 0 0

xc

ẋc

xz

+

0
0
1

 ẋz (4.13)

The same applies for the other two axes with an additive term g appearing in the
second equation of the dynamics along the z axis.

Let the control inputs be piecewise-constant over sampling intervals of duration
δ, with a prediction horizon Th = N · δ, and let tk be the current time instant and
let successive instants within prediction horizon be tk+i, i = 1, . . . , N by tk+i. At a
generic instant tj :

ẋz(t) = ẋjz, t ∈ [tj , tj+1) (4.14)

hence, the ZMP position along the x axis in the time interval [tj , tj+1] is:

xz(t) = xjz + (t− tj)ẋjz, t ∈ [tj , tj+1] (4.15)

4.4 MPC Formulation 27

previous
support
foot

double
support

left
footstep

right
footstep

double
support

next
support
foot

Figure 4.3. The ZMP constraint moves from a support foot to the following one during
double support phase.

4.4.1 ZMP constraints

Before describing the ZMP constraints in the 3D case (Fig. 4.2), the 2D case is
discussed.

When walking on fully horizontal ground, the robot keeps the equilibrium if
the ZMP remains inside the support polygon. Let (xjf , y

j
f , θ

j
f) be the pose of the

generic footstep within the given sequence. Let the ZMP constraint be fixed-shape
moving [37] to enforce balance. The admissible region for ZMP at tk+i is centered
in (xk+i

f , yk+i
f) and has orientation θk+i

f . In single support case, (xk+i
f , yk+i

f , θk+i
f)

coincide with the pose of the support foot, hence, (xjf , y
j
f , θ

j
f). In double support case,

(xk+i
f , yk+i

f , θk+i
f) gradually slide from the position and orientation of the previous

support foot to those of the next, as shown in Fig. 4.3. The expression of the ZMP
constraint in 2D can be written as:

− 1
2

dz
x

dz
y

 ≤ RTk+i

xk+i
z − xk+i

f

yk+i
z − yk+i

f

 ≤ 1
2

dz
x

dz
y

 (4.16)

where dz
x and dz

y are the width and the height of the rectangular constraint region and
RTk+i is the rotation matrix associated to the orientation θk+i

f . Note that (xk+i
z , yk+i

z)
is the predicted position of the ZMP, which can be expressed as a linear combination
of the control variables:

xk+i
z = xkz + δ

i−1∑
i=0

ẋk+j
z (4.17)

28 4. Variable Height CoM IS-MPC

Figure 4.4. The polyhedral cone representing the ZMP constraint and the box used to
approximate the constraint (which becomes linear).

Eq. (4.16) must be imposed for i = 1, . . . , N .
In the 3D case, the ZMP is allowed to leave the ground in order to generate CoM

motions along the z axis as well. As previously discussed, balance condition requires
ZMP to remain inside the polyhedral cone defined by the support polygon and the
CoM (Fig. 4.2). When the ZMP is allowed to move vertically, the constraint becomes
nonlinear. In order to remove nonlinearity it is possible to consider a subregion of
the polyhedral cone, for example a box, as shown in Fig. 4.4:

− 1
2

d̃z
x

d̃z
y

dz
z

 ≤ RTk+i

xk+i
z − xk+i

f

yk+i
z − yk+i

f

zk+i
z − yk+i

f

 ≤ 1
2

d̃z
x

d̃z
y

dz
z

 (4.18)

where dz
z defines the maximum allowed vertical ZMP displacement with respect

to the ground. To guarantee that the box is contained in the cone, its x and y

dimensions are respectively reduced to d̃z
x, d̃

z
y:

d̃z
x = dz

x

(
1− dz

z

2zmin
c

)
− dz

z

zmin
c

∆xc (4.19)

where ∆xc is the maximum expected displacement of the CoM with respect to the
center of the support foot and zmin

c is the minimum expected value for CoM height.
The same reasoning applies for d̃z

y. Similarly to the 2D case, the box constraint is
kept fixed during single support, while during double support the box slides linearly

4.4 MPC Formulation 29

CoM

x

z

Figure 4.5. The ZMP box constraint moves from a support foot to the following one during
double support phase.

from its position around the previous support foot to its position around the next
support foot, thus, always remaining within the polyhedral cone which defines the
ZMP balance constraint, as shown in Fig. 4.5.

4.4.2 Stability constraint

As previously seen, the motion model (4.7-4.9) is unstable, hence, it is not guaranteed
that the CoM position is bounded with respect to the ZMP in general. This could
make the generated gait unrealizable. However, as mentioned before and as discussed
in [36, 24], it is possible to prove that if the initial condition (xkc , ẋkc) satisfies:

xkc + ẋkc
ω

= ω

∫ ∞
tk

e−ω(τ−tk)xz(τ)dτ (4.20)

then xc remains bounded with respect to xz for all t. An analogous condition can
be given for yc dynamics. Regarding zc, it is possible to prove its boundedness by
using the following initial condition:

zkc + żkc
ω

= g

ω2 + ω

∫ ∞
tk

e−ω(τ−tk)zz(τ)dτ (4.21)

The above stability conditions can be enforced in the MPC formulation by writing
them with respect to the control variables ẋk+i

z , ẏk+i
z , żk+i

z . For xc, and similarly for

30 4. Variable Height CoM IS-MPC

yc, the initial condition can be writtes as:

1
ω

1− e−δω

1− e−Nδω
N−1∑
i=0

e−iδωẋk+i
z = xkc + ẋkc

ω
− xkz (4.22)

which can be obtained from (4.20) by considering that the ZMP trajectory (4.17) is
piecewise linear and that the contribution beyond the prediction horizon is computed
assuming infinite replication of the control variables within the prediction horizon
itself. A similar initial condition can be written for zc starting from (4.21), where żz
is set to zero beyond the prediction horizon (truncated tail):

1− e−δω

ω

N−1∑
i=0

e−iδω żk+i
z = zkc + żkc

ω
− zkz −

g

ω2 (4.23)

A more detailed discussion can be found in [38].

4.5 MPC Algorithm

Now that the constraints have been expressed with respect to the input variables, it
is possible to define the MPC scheme used to generate the gait. In particular, the
MPC algorithm solves a QP problem at each iteration determining the trajectory of
the CoM. Note that the footsteps are assigned in advance.

Considering the decision variable vectors:

Ẋk
z = (ẋkz , . . . , ẋk+N−1

z)T (4.24)

Ẏ k
z = (ẏkz , . . . , ẏk+N−1

z)T (4.25)

Żkz = (żkz , . . . , żk+N−1
z)T (4.26)

the QP problem can be defined as:

min
Ẋk

z ,Ẏ
k

z ,Ż
k
z

N∑
i=1

[
(ẋk+i
z)2 + (ẏk+i

z)2 + (żk+i
z)2+

β

(
(xk+i
z − xk+i

f)2 + (yk+i
z − yk+i

f)2 + (zk+i
z − zk+i

f)2
)]

s.t. ZMP constraint (4.18)

stability constraints (4.22), (4.23)

where the cost function includes the decision variables for regularization purposes
and a term which attempts to bring the ZMP to the center of the footstep.

Each MPC iteration starts at tk and executes the steps described in Algorithm
2, defining the trajectory of the CoM.

4.6 BHuman Implementation 31

Algorithm 2: MPC iteration
Result: CoM trajectory

1 Compute Ẋk
z , Ẏ k

z , Żkz that solve the QP problem;
2 From the solutions, extract the first control samples ẋkz , ẏkz , żkz ;
3 Set ẋz = ẋkz in (4.13) and integrate from (xkc , ẋkc , xkz) to obtain xc(t), ẋc(t),

xz(t) for t ∈ [tk, tk+1]. The same applies for for y, z.

4.6 BHuman Implementation

The MPC scheme has been implemented in C++ upon the BHuman framework [27]
and it has been tested on both dynamic environments and NAO humanoid robot.
The QP problem has been solved using qpOASES [39]. The footstep plan is either
generated by the footstep planner described in Chapter 3 or manually assigned
before the execution of the program. Experiments are described in detail in Chapter
5. Note that to speed up the execution of the code in order to keep computation
within the sampling time of the kinematic controller, the rotation matrix of the
ZMP constraint described in Eq. (4.18) has been neglected. This does not create
any problem if the size of the box is small enough to stay within the poyhedral cone
regardless of the rotation of the feet. The MPC hyperparameters have been set in
the following way: ω = 6.68s−1, the step duration Ts = 0.48s of which tSS = 0.30s of
single support and tDS = 0.18s of double support, Th = 0.96, N = 16. The size of
the box constraint have been set to d̃z

x = 0.05m, d̃z
y = 0.05m, d̃z

z = 0.05m.

33

Chapter 5

Experiments

To test the behaviour of the whole project, multiple experiments have been performed.
In particular, different scenario and test cases have been designed in order to study
in detail the functionalities of the robot and each program. As previously introduced,
the humanoid robot used for the experiments of this thesis is NAO [5], which has been
equipped with an ASUS Xtion Pro RGB-D camera [32], placed on top of its head. As
mentioned in the first chapter, the camera communicates with elevation_mapping

(Chapter 2), which creates a representation of the environment called elevation map,
which is used by the footstep planner, described in Chapter 3, to generate a safe
and feasible plan for the robot. The footsteps are sent to the robot, which runs an
implementation of the Variable Height CoM Intrinsically Stable MPC (Chapter 4)
that allows the robot to correctly perform the desired motion, making it able to
navigate in a World of Stairs environment.

The experiments have been performed by initially checking the real capabilities
of the robot, making it first climb a single staircase and then a stairway composed
of multiple staircases, in order to better understand the kind of scenario that NAO
can handle. At this point only the MPC is used, assigning the footsteps manually.
Then, the footstep planner is introduced into the project, making NAO navigate
autonomously from its initial position to a goal region, given an elevation map of
the environment which has been manually created. In the end, NAO is equipped
with an ASUS Xtion Pro camera. This allows to introduce elevation_mapping to
the project, generating autonomously elevation maps, making NAO able to move in
a World of Stairs environment which is not known a priori, correctly climbing the
stairs in order to reach a desired position.

34 5. Experiments

Figure 5.1. The figure shows NAO v5 humanoid robot, the platform used for the experi-
ments of this thesis, equipped with an ASUS Xtion Pro RGB-D camera. The camera is
connected via USB to an external computer which runs elevation_mapping and the
footstep planner. The external computer communicates with NAO through an ethernet
cable using TCP.

5.1 NAO and Computer Settings

The NAO v5 humanoid robot (Fig: 5.1), developed by Softbank, is 57 cm tall
and weights 5.4 kg. It is equipped with an Intel ATOM Z530 processor which
has a frequencly of 1.6 Ghz, 1 GB of RAM and 2 GB of flash storage. It has 25
DoF, 7 touch sensors located on the head, the hands and the feet, two internal
cameras, 4 microphones, a speaker, sonar and IMU sensors. The framework used
for the experiments, which has been installed on the robot, is BHuman [27], which
simplifies the development of on board algorithms by organizing the framework in
modules. When using the full settings, NAO is equipped with an ASUS Xtion Pro
RGB-D camera, which is connected to an external computer via a USB cable. This
external computer communicates with NAO via an ethernet cable through TCP.
Both elevation_mapping and the footstep planner run on the external computer,
which is equipped with an Intel Core i5-5257U with 2.70 GHz base frequency and 16
GB of RAM. The Variable Height CoM IS-MPC runs on the robot at 100 Hz.

5.2 Simple Staircase 35

5.2 Simple Staircase

As mentioned before, the aim of the first experiment is to understand the kind
of scenario that the robot can handle. In this first setting, only the robot with
the Variable Height CoM IS-MPC is used. The planner and the mapper will be
introduced later. The footsteps are, hence, assigned manually.

The first scenario, called “Normal Staircase” consists in placing the robot in
front of a staircase of 2 cm in order to make the robot climb it. To consider the
experiment successful, NAO must climb the staircase putting the whole foot on the
ground at each step. Increasing the length of the footstep increases the footprint
area that is in contact with the ground at each step during climbing. However,
while shorter footsteps are easier to perform, longer footsteps need to deal with the
kinematic limitations of the robot. It is clear from the experiment (Fig. 5.2) that
the larger the footstep is, the harder it is for the robot to make a step. In particular,
in Fig. 5.2a the robot performs a footstep of size 16 cm; the foot is not placed
entirely on the staircase (Fig. 5.2b), causing the robot to be unstable. This causes
the robot to slip (Fig. 5.2c) while attempting to do the second step. In the end, the
robot falls on the floor (Fig. 5.2d) failing the assigned task. A longer footstep is,
hence, needed in order to correctly perform the motion. However, due to the short
legs of the robot, longer footsteps cause the robot to immediately fall. This suggests
that NAO is not able to climb this kind of stairway due to its kinematics and that
a special stairway needs to be built in order to test the behaviour of the Variable
Height CoM IS-MPC.

The scenario “Simple Staircase” is similar to the previous one. The only exception
is the structure of the stairs, which has been put as in Fig. 5.3 in order to give NAO
some space to place the foot before climbing the staircase. Placing the staircases
in this way allows the robot to perform climbing with shorter footsteps, avoiding
kinematic limitations and correctly making it complete the assigned task. With
these settings, NAO is able to climb staircases up to 4 cm. Fig. 5.3 shows NAO
climbing a staircase of 3 cm. Fig. 5.4 shows how the CoM and the ZMP varies
through time with respect to the position of the support foot, when dealing with
a staircase of 4 cm. It is important to notice that both the CoM and the ZMP
change their height when the robot performs a step. This is possible because of
the the Variable Height CoM IS-MPC described in Chapter 4, which allows the
two variables to move along the z axis while keeping a linear motion model like the
Linear Inverted Pendulum [24]. This characteristic is important not just in terms of
the analysis of the system, but also in terms of computational resources, which can
be kept low as for the case of NAO.

36 5. Experiments

(a) Starting position (b) First step

(c) Second step (d) Robot falling

Figure 5.2. The figures show the motion of the robot for the scenario “Normal Staircase”.
The robot starts just in front of the stairs (Fig. 5.2a). The motion starts by placeing
the first footstep on the staircase (Fig. 5.2b). Here, it is already clear that the motion
could be unsuccessful. The foot is, in fact, not entirely in contact with the staircase.
Longer footsteps make the robot immediately fall. Shorter footsteps are safer but fail to
correctly place the foot. In Fig. 5.2c the robot attempts to place the other foot on the
platform but it falls (Fig. 5.2d), making the robot fail its task. Each staircase has a
height of 2 cm.

5.2 Simple Staircase 37

(a) Starting position (b) First step

(c) Second step (d) Third step

(e) Fourth step (f) Final position

Figure 5.3. The figures show the motion of the robot for the scenario “Simple Staircase (3
cm)”. The robot start just in front of the stairs (Fig. 5.3a), then it places each step one
in front of the other without colliding with the staircases, safely climbing the stairway.
Each staircase has a height of 3 cm.

38 5. Experiments

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
x [m]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
y

[m
]

ZMP
CoM

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
x [m]

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

z
[m

]

ZMP
CoM

Figure 5.4. The plots show how the CoM and the ZMP vary with respect to the footsteps
in the scenario “Simple Staircase (4 cm)”. The green boxes represent the footsteps.

5.3 Multiple Staircases 39

5.3 Multiple Staircases

This second experiment consists in making NAO climb a stairway composed of
two staircases of 2 cm both upstairs and downstairs. The sequence of footsteps is
manually assigned as in the previous experiment.

5.3.1 Upstairs

The following scenario is called “Multiple Staircases (Upstairs)” and it consists in
making NAO climb a stairway composed of two consecutive staircases of 2 cm by
moving upstairs. Fig. 5.5 shows the behaviour of the robot for this setting. NAO
correctly completes the assigned task reaching the top of the stairway. Fig. 5.6 show
how the CoM and the ZMP changes through time during this experiment. Again, it
is important to notice how both variables change in the z axis, allowing the robot to
safely climb the stairway.

5.3.2 Downstairs

The following scenario is called “Multiple Staircases (Downstairs)” and it consists in
making NAO climb a stairway composed of two consecutive staircases of 2 cm by
moving downstairs. Fig. 5.7 shows the behaviour of the robot for this setting. NAO
correctly completes the assigned task reaching ground level. Fig. 5.8 show how the
CoM and the ZMP changes through time during this experiment.

5.4 Obstacle Avoidance

The third experiment introduces the footstep planner described in Chapter 3 into
the project. The aim is to test the behaviour of the planner in a simple World
of Stairs scenario that contains a platform put between the initial position of the
robot and the goal region that can not be climbed by NAO. The goal of the footstep
planner is those of finding a feasible plan not just avoiding the obstacle, but also by
not stepping onto it. The robot would, in fact, not climb it correctly because of its
physical limitations. The elevation map used in this experiment has been manually
generated.

The planner generates a plan of 31 steps (Fig. 5.10) in 70 ms (Table 5.1). The
corresponding tree in shown in Fig. 5.11 and it has size 488. Fig. 5.9 shows the
robot moving inside the environment from its initial position to the goal region (a
circle of radius 10 cm with center at the position of the ball).

40 5. Experiments

(a) Starting position (b) First step

(c) Second step (d) Third step

(e) Fourth step (f) Fifth step

Figure 5.5. The figures show the motion of the robot for the scenario “Multiple Staircases
(Upstairs)”. The robot starts just in front of the stairs (Fig. 5.5a), then it places each
step one in front of the other without colliding with the staircases, safely climbing the
stairway. Each staircase has a height of 2 cm.

5.4 Obstacle Avoidance 41

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
x [m]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

y
[m

]

ZMP
CoM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
x [m]

-0.2

-0.1

0

0.1

0.2

0.3

0.4

z
[m

]

ZMP
CoM

Figure 5.6. The plots show how the CoM and the ZMP vary with respect to the footsteps
in the scenario “Multiple Staircases (Upstairs)”. The green boxes represent the footsteps.

42 5. Experiments

(a) Starting position (b) First step

(c) Second step (d) Third step

(e) Fourth step (f) Fifth step

Figure 5.7. The figures show the motion of the robot for the scenario “Multiple Staircases
(Downstairs)”. The robot starts on top of the stairway (Fig. 5.7a), then it places each
step one in front of the other without colliding with the staircases, safely reaching ground
level. Each staircase has a height of 2 cm.

5.4 Obstacle Avoidance 43

0 0.2 0.4 0.6 0.8 1
x [m]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

y
[m

]

ZMP
CoM

0 0.2 0.4 0.6 0.8 1
x [m]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

z
[m

]

ZMP
CoM

Figure 5.8. The plots show how the CoM and the ZMP vary with respect to the footsteps in
the scenario “Multiple Staircases (Downstairs)”. The green boxes represent the footsteps.

44 5. Experiments

Scenario Tree Size Solution Size Runtime
Obtacle Avoidance 488 31 70 ms

Stair Climbing in Unknown Environment 454 10 331 ms
Table 5.1. Performances of the planner on different scenarios. Note that even if the size

of the trees are similar, the runtime of “Stair Climbing in Unknown Environment” is
slower due to noise in the elevation map. All the experiment have been performed on an
Intel Core i5-5257U @ 2.70 Ghz.

Since the planner is based on RRT, the generated plan is not optimal. It is, in
fact, possible to notice how the robot does not move fluidly, sometimes putting the
foot back and forth before changing position. This is a characteristic of RRT that
could be changed by building the algorithm on top of RRT* [40].

5.5 Stair Climbing in Unknown Environment

The last experiment introduces elevation_mapping (Chapter 2) into the project.
The aim is to test the behaviour of the framework in an unknown World of Stairs
environment. The idea is to generate a map autonomously exploiting the depth
sensor of the ASUS Xtion Pro camera, which has been put on top of NAO humanoid
robot. The generated map is sent to the footstep planner described in Chapter 3
which is in charge of generating a plan that brings the robot to a predefined goal
region. This goal region is placed on top of a stairway, so that the robot must climb
the stairs in order to complete the task. The generation of the map has been already
described in Chapter 2 and it is shown in Fig. 2.5. As already discussed, once the
footstep plan is generated, it is sent to the robot which executes a proper motion
using the Variable Height CoM IS-MPC (Chapter 4).

The planner generates a plan of 10 steps (Fig. 5.13) in 0.331s (Table 5.1). Note
that the runtime of this experiment is slower than the previous one because of the
noise contained in the elevation map, which causes the planner to discard many
configurations since they do not satisfy requirement R2 of the footstep planner
(Chapter 3). In this experiment the requirement R2 has been relaxed allowing a
maximum difference of 7 mm between the z coordinate of the footstep and the height
of a cell in the map. The corresponding tree is shown in Fig. 5.14 and it has size 454.
Fig. 5.12 shows the robot moving inside the environment from its initial position to
the goal region (a circle of radius 10 cm with center at the position of the ball).

5.5 Stair Climbing in Unknown Environment 45

(a) Starting position (b) Moving to the left

(c) Avoiding the obstacle (d) Moving forward

(e) Moving towards the goal (f) Goal region reached

Figure 5.9. The figures show the motion of the robot for the scenario “Obstacle Avoidance”.
The robot starts in front of the obstacle (Fig. 5.9a), then it moves to its left correctly
avoiding it (Fig. 5.9b-5.9e) until it reaches the goal region (Fig. 5.9f), whose center is
represented by the ball. The goal region is a circle with a radius of 10 cm. Note that
even if the obstacle has a height of 2 cm, NAO can not climb it because of its kinematic
limitations, hence, the planner takes into account the mechanical capabilities of the
robot, generating a safe and realizable footstep plan.

46 5. Experiments

Figure 5.10. Footstep plan generated for the scenario “Obstacle Avoidance”.

5.5 Stair Climbing in Unknown Environment 47

Figure 5.11. Tree generated for the scenario “Obstacle Avoidance”.

48 5. Experiments

(a) Starting position (b) First step

(c) Second step (d) Third step

(e) Fourth step (f) Fifth step

(g) Seventh step (h) Eighth step

Figure 5.12. The figures show the motion of the robot for the scenario “Stair Climbing
in Unknown Environment”. The robot starts at 20 cm from the first staircase (Fig.
5.12a). Before starting the motion (Fig. 5.12b), an elevation map is built by the
elevation_mapping framework (Chapter 2), which receives the depth frames from the
ASUS Xtion Pro placed on top of the robot. The elevation map is sent to the planner,
which generates a footstep plan (Chapter 3). The footstep plan is then sent to the robot,
which executes the motion by using the Variable Height CoM IS-MPC (Chapter 4). The
robot correctly manages to climb the stairs without colliding with the staircases. Each
staircase has a height of 2 cm.

5.5 Stair Climbing in Unknown Environment 49

Figure 5.13. Footstep plan generated for the scenario “Stair Climbing in Unknown
Environments”.

50 5. Experiments

Figure 5.14. Tree generated for the scenario “Stair Climbing in Unknown Environments”.

51

Chapter 6

Conclusion

6.1 Results

This thesis presents an architecture that integrates mapping, planning and control
to generate humanoid gaits in World of Stairs unknown environments. The use of
elevation_mapping [25] together with a depth sensor allows the robot to represent
the surrouding environment as a map that can be used by a RRT-based footstep
planning module [2] to generate a sequence of footsteps. The Variable-Height CoM
IS-MPC [26] has been implemented on NAO humanoid robot upon the BHuman
framework and the whole architecture has been tested on multiple scenarios.

6.2 Future Works

The current architecture does not include a localization module, limiting the poten-
tialities of the robot. Localizing the robot inside the environment would, in fact,
provide a precise configuration of the humanoid, enabling elevation_mapping to
continuously build the map during locomotion. A possible extension could be to
develop such module using a Kalman filter [41] or a factor graph [42]. Another
possible extension of this work could be that of developing a replanning phase [43],
allowing the robot to work in dynamic environments. The combination of these
two could give even more autonomy to humanoid robots, further advancing current
technology and allowing their introduction into our society.

53

Bibliography

[1] Michael Moran. The da vinci robot. Journal of endourology / Endourological
Society, 20:986–90, 01 2007.

[2] Paolo Ferrari, Nicola Scianca, Leonardo Lanari, and Giuseppe Oriolo. An
integrated motion planner/controller for humanoid robots on uneven ground.
In 18th European Control Conference, ECC 2019, Naples, Italy, June 25-28,
2019, pages 1598–1603, 2019.

[3] Ichiro Kato. The “wabot-1” an information-powered machine with senses and
limbs. 1973.

[4] Yoshiaki Sakagami, Ryujin Watanabe, Chiaki Aoyama, Shinichi Matsunaga,
Nobuo Higaki, and Kikuo FujiMura. The intelligent asimo: System overview
and integration. volume 3, pages 2478 – 2483 vol.3, 02 2002.

[5] David Gouaillier, Vincent Hugel, Pierre Blazevic, Chris Kilner, Jérôme Mon-
ceaux, Pascal Lafourcade, Brice Marnier, Julien Serre, and Bruno Maisonnier.
Mechatronic design of nao humanoid. pages 769 – 774, 06 2009.

[6] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi
Osawa. Robocup: The robot world cup initiative. In Proceedings of the First
International Conference on Autonomous Agents, AGENTS ’97, pages 340–347,
New York, NY, USA, 1997. Association for Computing Machinery.

[7] Giulio Sandini, Giorgio Metta, and David Vernon. The ICub Cognitive Hu-
manoid Robot: An Open-System Research Platform for Enactive Cognition,
pages 358–369. Springer-Verlag, Berlin, Heidelberg, 2007.

[8] Christopher Atkeson, Benzun Pious Wisely Babu, Nandan Banerjee, Dmitry
Berenson, Christoper Bove, Xiongyi Cui, Mathew Dedonato, Ruixiang Du,
Siyuan Feng, Perry Franklin, M. Gennert, Joshua Graff, Peng He, Aaron Jaeger,
Joohyung Kim, Kevin Knoedler, Lening Li, Chenggang Liu, Xianchao Long,

54 Bibliography

and X. Xinjilefu. What Happened at the DARPA Robotics Challenge Finals,
pages 667–684. 04 2018.

[9] Nicolaus A. Radford, Philip Strawser, Kimberly Hambuchen, Joshua S. Mehling,
William K. Verdeyen, A. Stuart Donnan, James Holley, Jairo Sanchez, Vienny
Nguyen, Lyndon Bridgwater, and et al. Valkyrie: Nasa’s first bipedal humanoid
robot. J. Field Robot., 32(3):397–419, May 2015.

[10] Claudio Gaz, Fabrizio Flacco, and Alessandro Luca. Identifying the dynamic
model used by the kuka lwr: A reverse engineering approach. Proceedings -
IEEE International Conference on Robotics and Automation, pages 1386–1392,
09 2014.

[11] Marco Hutter, Philipp Leemann, Stefan Stevsiic, Andreas Michel, Dominic Jud,
Ruedi Figi, Christian Caduff, Markus Loher, Stefan Tagmann, Mark Hoepflinger,
and Roland Siegwart. Towards optimal force distribution for walking excavators.
In 2015 International Conference on Advanced Robotics (ICAR), pages 295 –
301, Piscataway, NJ, 2015. IEEE. 2015 International Conference on Advanced
Robotics (ICAR); Conference Location: Istanbul, Turkey; Conference Date:
July 27-31, 2015.

[12] A. Hornung, Kai Wurm, and Maren Bennewitz. Humanoid robot localization
in complex indoor environments. pages 1690 – 1695, 11 2010.

[13] Giuseppe Oriolo, Antonio Paolillo, Lorenzo Rosa, and Marilena Vendittelli.
Humanoid odometric localization integrating kinematic, inertial and visual
information. Autonomous Robots, 40, 09 2015.

[14] Arnaud Tanguy, Daniele De Simone, Andrew I. Comport, Giuseppe Oriolo,
and Abderrahmane Kheddar. Closed-loop MPC with dense visual SLAM -
stability through reactive stepping. In International Conference on Robotics
and Automation, ICRA 2019, Montreal, QC, Canada, May 20-24, 2019, pages
1397–1403, 2019.

[15] Bruno Siciliano and Oussama Khatib, editors. Springer Handbook of Robotics.
Springer Handbooks. Springer, 2016.

[16] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, andWolfram
Burgard. OctoMap: An efficient probabilistic 3D mapping framework based
on octrees. Autonomous Robots, 2013. Software available at http://octomap.

github.com.

http://octomap.github.com
http://octomap.github.com

Bibliography 55

[17] Joel Chestnutt, Manfred Lau, G. Cheung, James Kuffner, Jessica Hodgins, and
Takeo Kanade. Footstep planning for the honda asimo humanoid. volume 2005,
pages 629 – 634, 05 2005.

[18] Armin Hornung, Andrew Dornbush, Maxim Likhachev, and Maren Bennewitz.
Anytime search-based footstep planning with suboptimality bounds. In 12th
IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012),
Osaka, Japan, November 29 - Dec. 1, 2012, pages 674–679, 2012.

[19] Andrei Herdt, Holger Diedam, Pierre-Brice Wieber, Dimitar Dimitrov, Katja
Mombaur, and Moritz Diehl. Online walking motion generation with automatic
foot step placement. Advanced Robotics, 24:719–737, 04 2010.

[20] Robin Deits and Russ Tedrake. Footstep planning on uneven terrain with
mixed-integer convex optimization. 2015:279–286, 02 2015.

[21] Shuuji Kajita and Kazuo Tanie. Study of dynamic biped locomotion on rugged
terrain-derivation and application of the linear inverted pendulum mode. Pro-
ceedings. 1991 IEEE International Conference on Robotics and Automation,
pages 1405–1411 vol.2, 1991.

[22] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kiyoshi Fujiwara, Kensuke
Harada, Kazuhito Yokoi, and Hirohisa Hirukawa. Biped walking pattern gener-
ation by using preview control of zero-moment point. 2003 IEEE International
Conference on Robotics and Automation (Cat. No.03CH37422), 2:1620–1626
vol.2, 2003.

[23] Pierre-Brice Wieber. Trajectory Free Linear Model Predictive Control for Stable
Walking in the Presence of Strong Perturbations. In IEEE-RAS International
Conference on Humanoid Robots, Genova, Italy, 2006.

[24] Nicola Scianca, Marco Cognetti, Daniele De Simone, Leonardo Lanari, and
Giuseppe Oriolo. Intrinsically stable MPC for humanoid gait generation. In
16th IEEE-RAS International Conference on Humanoid Robots, Humanoids
2016, Cancun, Mexico, November 15-17, 2016, pages 601–606, 2016.

[25] Péter Fankhauser, Michael Bloesch, and Marco Hutter. Probabilistic terrain
mapping for mobile robots with uncertain localization. IEEE Robotics and
Automation Letters (RA-L), 3(4):3019–3026, 2018.

[26] Alessio Zamparelli, Nicola Scianca, L. Lanari, and Giuseppe Oriolo. Humanoid
Gait Generation on Uneven Ground using Intrinsically Stable MPC. IFAC-
PapersOnLine, 51:393–398, 01 2018.

56 Bibliography

[27] Thomas Röfer, Tim Laue, Arne Hasselbring, Jannik Heyen, Bernd Poppinga,
Philip Reichenberg, Enno Roehrig, and Felix Thielke. B-Human team report
and code release 2018, 2018. Only available online: http://www.b-human.de/

downloads/publications/2018/CodeRelease2018.pdf.

[28] Stanford Artificial Intelligence Laboratory et al. Robotic operating system.

[29] Péter Fankhauser and Marco Hutter. A Universal Grid Map Library: Im-
plementation and Use Case for Rough Terrain Navigation. In Anis Koubaa,
editor, Robot Operating System (ROS) âĂŞ The Complete Reference (Volume
1), chapter 5. Springer, 2016.

[30] Péter Fankhauser, Michael Bloesch, Diego Rodriguez, Ralf Kaestner, Marco
Hutter, and Roland Y. Siegwart. Kinect v2 for mobile robot navigation: Evalu-
ation and modeling. In 2015 International Conference on Advanced Robotics
(ICAR), pages 388 – 394, Piscataway, NJ, 2015-09-10. IEEE. International
Conference on Advanced Robotics (ICAR 2015); Conference Location: Istanbul,
Turkey; Conference Date: July 27-31, 2015.

[31] Péter Fankhauser, Marko Bjelonic, Dario Bellicoso, Takahiro Miki, and Marco
Hutter. Robust rough-terrain locomotion with a quadrupedal robot. 05 2018.

[32] ASUS Xtion Pro. https://www.asus.com/3D-Sensor/Xtion_PRO/.

[33] camera_calibration. http://wiki.ros.org/camera_calibration.

[34] M. Vukobratović and J. Stepanenko. On the stability of anthropomorphic
systems. Mathematical Biosciences, 15(1):1 – 37, 1972.

[35] Shuuji Kajita, Hirohisa Hirukawa, Kensuke Harada, and Kazuhito Yokoi. In-
troduction to Humanoid Robotics. Springer Publishing Company, Incorporated,
2014.

[36] Leonardo Lanari, Seth Hutchinson, and Luca Marchionni. Boundedness issues
in planning of locomotion trajectories for biped robots. 2014 IEEE-RAS
International Conference on Humanoid Robots, pages 951–958, 2014.

[37] Ahmed Aboudonia, Nicola Scianca, Daniele De Simone, L. Lanari, and Giuseppe
Oriolo. Humanoid gait generation for walk-to locomotion using single-stage
mpc. pages 178–183, 11 2017.

[38] Nicola Scianca, Daniele De Simone, Leonardo Lanari, and Giuseppe Oriolo. MPC
for humanoid gait generation: Stability and feasibility. CoRR, abs/1901.08505,
2019.

http://www.b-human.de/downloads/publications/2018/CodeRelease2018.pdf
http://www.b-human.de/downloads/publications/2018/CodeRelease2018.pdf
https://www.asus.com/3D-Sensor/Xtion_PRO/
http://wiki.ros.org/camera_calibration

Bibliography 57

[39] Joachim Ferreau, Christian Kirches, Andreas Potschka, Hans Bock, and Moritz
Diehl. qpoases: A parametric active-set algorithm for quadratic programming.
Mathematical Programming Computation, 6, 12 2014.

[40] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. Int. J. Rob. Res., 30(7):846–894, June 2011.

[41] M. Bloesch, C. Gehring, P. Fankhauser, M. Hutter, M. A. Hoepflinger, and
R. Siegwart. State estimation for legged robots on unstable and slippery terrain.
In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 6058–6064, Nov 2013.

[42] David Wisth, Marco Camurri, and Maurice Fallon. Preintegrated velocity bias
estimation to overcome contact nonlinearities in legged robot odometry, 10
2019.

[43] Robert Griffin, Georg Wiedebach, Stephen McCrory, Sylvain Bertrand, Inho
Lee, and Jerry Pratt. Footstep planning for autonomous walking over rough
terrain, 07 2019.

	Introduction
	Humanoid Robots
	Legged Robot Locomotion
	Localization and Mapping
	Planning
	Control

	Thesis Overview

	Elevation Map Generation
	Framework
	Definitions
	Map Update
	Map Fusion and Dynamic Environments

	ASUS Xtion Pro
	World of Stairs

	RRT-based Footstep Planning
	Problem Formulation
	Notation and Plan Feasibility

	Algorithm
	Pseudocode

	Implementation
	Catalogue of Primitives

	Variable Height CoM IS-MPC
	3D Motion Model
	LIP
	Variable Height CoM Motion Model
	MPC Formulation
	ZMP constraints
	Stability constraint

	MPC Algorithm
	BHuman Implementation

	Experiments
	NAO and Computer Settings
	Simple Staircase
	Multiple Staircases
	Upstairs
	Downstairs

	Obstacle Avoidance
	Stair Climbing in Unknown Environment

	Conclusion
	Results
	Future Works

